正态分布中normpdf和normcdf的区别
迪迦 • 奥特曼
2016-10-08 20:14:14
20291
收藏
7
分类专栏:
matlab
最后发布:2016-10-08 20:14:14
首次发布:2016-10-08 20:14:14
同时,也可以扩展为其它函数的区别,即pdf与cdf
点赞
3
评论
分享
x
海报分享
扫一扫,分享海报
收藏
7
举报
关注
关注
一键三连
点赞Mark关注该博主, 随时了解TA的最新博文
已标记关键词
清除标记
scipy.stats
中
norm的简单使用
Ackerman2的博客
10-13
3426
说明 norm(0,1)表示均值是0,方差是1的正太分布 记f(x)是正太分布的密度函数,p(X<x) = F(x)是分布函数 代码 from scipy.stats import norm print(norm(0,1).ppf(0.5)) # 知道 p = F(x) 反求 x print(norm(0,1).pdf(0)) # 知道 x 求 f(x) print(norm(...
插入表情
添加代码片
HTML/XML
objective-c
Ruby
PHP
C
C++
JavaScript
Python
Java
CSS
SQL
其它
还能输入
1000
个字符
normpdf
函数的用法
taoqipaopaott的专栏
12-22
3万+
normpdf
:正态概率密度函数 Y =
normpdf
(X,mu,sigma) mu:均值 sigma:标准差 Y:正态概率密度函数在x处的值
正态分布
基本概念及公式
zch-兴趣使然-blog
04-19
3万+
正态分布
,又称高斯分布。其特征为
中
间高两边低左右对称。它有以下几个性质: 集
中
性:曲线的最高峰位于正
中
央,且位置为均数所在的位置。 对称性:
正态分布
曲线以均数所在的位置为
中
心左右对称且曲线两段无线趋近于横轴。 均匀变动性:
正态分布
曲线以均数所在的位置为
中
心均匀向左右两侧下降。 面积恒等:曲线与横轴间的面积总等于1。
正态分布
函数公式如下: 其
中
μ为均数,σ为标准差。μ决定了
正态分布
...
Matlab
中
的normrnd函数用法(产生
正态分布
随机数)
xuxinrk的博客
06-05
4万+
原文功能:生成服从
正态分布
的随机数语法:R=normrnd(MU,SIGMA)R=normrnd(MU,SIGMA,m)R=normrnd(MU,SIGMA,m,n) 说 明:R=normrnd(MU,SIGMA):生成服从
正态分布
(MU参数代表均值,DELTA参数代表标准差)的随机数。输入的向量或矩阵MU和SIGMA必须形式相同,输出R也和它们形式相同。标量输入将被扩展成和其它输入具有 相同维...
matlab
中
mvnpdf和
normpdf
的
区别
qq_35752161的博客
10-03
4499
多维
正态分布
mvnpdf: mvnpdf(x, u, sigma),sigma是协方差 一维
正态分布
normpdf
:
normpdf
(x, u, sigma),sigma是标准差
正态分布
概率密度函数PDF
求津问道的博客
12-09
3万+
概率密度函数,这种方法能够表示随机变量每个取值有多大的可能性。 概率密度函数 四个不同参数集的概率密度函数(绿色线代表标准
正态分布
)
正态分布
的概率密度函数均值为μ 方差为σ2 (或标准差σ)是高斯函数的一个实例: 。 (请看指数函数以及π.) 如果一个随机变量X服从这个分布,我们写作 X ~ N(μ,σ2). 如果μ = 0
一维
正态分布
、二维
正态分布
的matlab实现
wenyusuran的专栏
02-02
1万+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %本程序用于产生一维
正态分布
、二维
正态分布
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %绘制一维
正态分布
x=linspace(-3,3); y=
normpdf
(x,0,1); figure(1) plot(x,y,'r'); %绘制二维
正态分布
x=-20:0.5:2
python-numpy-
正态分布
的模拟--pdf图--cdf图---
正态分布
的拟合
云金杞
03-17
1万+
# Draw 100000 samples from Normal distribution with stds of interest: samples_std1, samples_std3, samples_std10 samples_std1=np.random.normal(20,1,size=100000) samples_std3=np.random.normal(20,3,size=...
matlab
中
正态分布
相关函数hist normfit normplot
心向暖的博客
06-21
3586
hist(x,y); %x作为坐标,y作为函数值画出直方图; h = histogram(aa); %对h进行统计,matlab自动给h进行分列。可以指定柱状的数量:hh = histogram(aa,10); [muhat,sigmahat,muci,sigmaci] = normfit(X) ; [muhat,sigmahat,muci,sigmaci] =normf...
MATLAB
中
的常用命令
snailme的博客
05-19
1万+
MATLAB
中
命令窗口和编辑窗口
中
常用的命令
Matlab
中
产生
正态分布
随机数的函数normrnd
s334wuchunfangi的专栏
11-08
5万+
功能:生成服从
正态分布
的随机数 语法: R=normrnd(MU,SIGMA) R=normrnd(MU,SIGMA,m) R=normrnd(MU,SIGMA,m,n) 说 明: R=normrnd(MU,SIGMA):生成服从
正态分布
(MU参数代表均值,DELTA参数代表标准差)的随机数。输入的向量或矩阵MU和SIGMA必须形式相同,输出R也和它们形式相同。标量输入将被扩展成和
Python 标准
正态分布
(四)
大雕会飞的小记~
10-30
1万+
1.生成随机
正态分布
值 标准
正态分布
N(0,1) -&amp;gt; N(μ,σ²) Norm=np.random.normal(loc=0,scale=1.0,size=5), # loc 表示均值 scale 表示标准差σ size 表示生成个数 2.正太分布随机数密度值 status.norm.pdf(Norm) # 相当于已知
正态分布
函数曲线和x值,求y值 3.求正太分布累计密度值 statu...
MATLAB解决
正态分布
数据的大致方法
yongheng_1999的博客
01-21
6246
当我们有了一个矩阵,如何判断矩阵里面的元素是否满足
正态分布
,以及如何绘制图像和求参数。我根据自己最近使用matlab的一些体会,将大致方法写下。 1、矩阵元素转化成行向量 reshape()函数 example: A = 1 2 3 4 5 6 7 8 9 >> B=reshape(
标准
正态分布
表(scipy.stats)
https://space.bilibili.com/59807853
05-20
14万+
0. 标准
正态分布
表与常用值 Z-score 是非标准
正态分布
标准化后的 x即 z=x−μσz=x−μσz = \frac{x-\mu}{\sigma} 表头的横向表示小数点后第二位,表头的纵向则为整数部分以及小数点后第一位;两者联合作为完整的 x,坐标轴的横轴 表
中
的值为图
中
红色区域的面积,也即 cdf,连续分布的累积概率函数,记为 Φ(x)Φ(x)\Phi(x) cdf 的逆,...
正态分布
(Normal distribution)又名高斯分布(Gaussian distribution)
rns521的专栏
11-09
34万+
正态分布
(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。 若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为: X∼N(μ,σ2), 则其概率密度函数为
正态分布
的期望值μ决定了其位置,其标准差σ决定了分布的幅度
©️2020 CSDN
皮肤主题: 编程工作室
设计师:CSDN官方博客
返回首页